Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.285
Filtrar
1.
Radiat Prot Dosimetry ; 200(6): 538-543, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38441907

RESUMO

The objective of this study is dosimetric comparison between the O-ring Halcyon and C-arm Clinac iX linac for volumetric modulated arc therapy (VMAT) plans for head & neck (H&N) cancer and carcinoma cervix patients. Total 60 patients of H&N cancer and carcinoma cervix were enrolled prospectively from March 2021 to March 2023. VMAT plans with 6 MV photons for Halcyon and Clinac iX were generated and compared for each patient by dose volume histogram for planning target volume coverage and organ at risk (OAR) sparing. There were no differences in between both the linacs for PTV D2% and D98%, homogeneity index, conformity index, Dmax (maximum dose) and Dmean (mean dose) of OAR. Halcyon had significantly shorter treatment time compared to Clinac iX. Halcyon delivered higher integral dose and monitor units. O-ring Halcyon produces VMAT plans comparable to other C-arm linacs for H&N and carcinoma cervix patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Humanos , Radioterapia de Intensidade Modulada/métodos , Feminino , Neoplasias do Colo do Útero/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco/efeitos da radiação , Radiometria/métodos , Estudos Prospectivos , Pessoa de Meia-Idade , Adulto
2.
J Cancer Res Ther ; 17(5): 1165-1171, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34850763

RESUMO

OBJECTIVE: Halcyon accelerator applies the flattening filter (FF)-free mode instead of the lead gate and FF treatment mode for traditional C-type accelerators. We aimed at comparing and analyzing the quality and delivery of nasopharyngeal carcinoma (NPC) plans between Halcyon and VitalBeam (VB) accelerators in fixed-field intensity-modulated radiation therapy (IMRT). METHODS: The IMRT plans for thirty patients with NPC who had received radiotherapy were optimized using the VB (Plan VB) and Halcyon (Plan H) accelerators. Quality assurance verification was then conducted. The dose coverage of the planning target volume (PTV) and organs at risk (OARs), monitor units (MUs), and delivery time were analyzed for each plan. RESULTS: All PTV and OAR indexes of Plan H and Plan VB met the clinical requirements. In the exposure dose of bilateral optic nerves between Plan H and Plan VB, no difference was found. The maximum dose of the lens, brainstem, spinal cord were 1.13 Gy, 1.36 Gy, 1.35 Gy, 2.82 Gy lower than the plan using VB , and the mean dose of the parotid glands were 3.82 Gy, 5.56 Gy lower than the plan using VB respectively, and an insignificant difference was found in the brainstem (P > 0.05). The MU for Plan H (22.92 ± 1.58 Gy) was higher than that for Plan VB (19.69 ± 4.52 Gy), and the difference was significant (P < 0.05). CONCLUSIONS: The treatment plans designed by Halcyon can meet clinical requirements with better protection for OARs and show advantages over VB in the dosimetry of NPC IMRT plans.


Assuntos
Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Prognóstico , Dosagem Radioterapêutica
3.
Asian Pac J Cancer Prev ; 22(12): 3883-3888, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967567

RESUMO

PURPOSE: The present study aims to compare different dosimetric parameters from field sizes defined by secondary and tertiary collimators. A comparison has been drawn between two types of Multi Leaf Collimator (MLC) designs. MATERIALS AND METHODS: The measurements were obtained using Millennium MLC (Mi-MLC) from Varian Unique™ linear accelerator (LINAC-1) and compared with measurements from Varian Truebeam™ linear accelerator (LINAC-2) using High Definition MLC (HD-MLC). Dosimetric analysis included percentage depth dose (PDD), cross profile, dosimetric leaf gap (DLG) and scatter factor (SF) that were taken for different field sizes defined by both the MLC design and jaw. For beam data measurement PTW Radiation field analyse (RFA) was utilized. RESULTS: When the surface dose for MLC field for linac 1 and linac 2 were compared with jaws they were found to be on the higher side that is 2.8% to 4.9% and 2.2% to 3.6% respectively. The SF was found to vary from -3.2% to 0.73% for LINAC-1 with Mi-MLC when compared with jaws. Similarly, the SF variation from -2.4% to 1.1% was observed for LINAC-2 with HD-MLC as compared with jaw. Larger field sizes gave increased SF while smaller field sizes showed the opposite for HD-MLC. The penumbra was found to be less in HD-MLC as compared to Mi-MLC. Similarly, DLG was found to reduce by 0.056 mm in Mi-MLC when compared with HD-MLC. The results of symmetry and flatness were seen within the limits for both MLC designs. CONCLUSION: It can be concluded from the results that both the MLC designs have merits and demerits that are based on their effectiveness and clinical use. However, higher surface dose was found in HD-MLC in contrast to Mi-MLC.


Assuntos
Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Fótons , Radiometria/instrumentação , Humanos , Radiometria/métodos , Dosagem Radioterapêutica
4.
Radiat Oncol ; 16(1): 213, 2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34742291

RESUMO

BACKGROUND: To implement a tangential treatment technique for whole breast irradiation using the Varian Halcyon and to compare it with Elekta Synergy Agility plans. METHODS: For 20 patients two comparable treatment plans with respect to dose coverage and normal tissue sparing were generated. Tangential field-in-field treatment plans (Pinnacle/Synergy) were replanned using the sliding window technique (Eclipse/Halcyon). Plan specific QA was performed using the portal Dosimetry and the ArcCHECK phantom. Imaging and treatment dose were evaluated for treatment delivery on both systems using a modified CIRS Phantom. RESULTS: The mean number of monitor units for a fraction dose of 2.67 Gy was 515 MUs and 260 MUs for Halcyon and Synergy Agility plans, respectively. The homogeneity index and dose coverage were similar for both treatment units. The plan specific QA showed good agreement between measured and calculated plans. All Halcyon plans passed portal dosimetry QA (3%/2 mm) with 100% points passing and ArcCheck QA (3%/2 mm) with 99.5%. Measurement of the cumulated treatment and imaging dose with the CIRS phantom resulted in lower dose to the contralateral breast for the Halcyon plans. CONCLUSIONS: For the Varian Halcyon a plan quality similar to the Elekta Synergy device was achieved. For the Halcyon plans the dose contribution from the treatment fields to the contralateral breast was even lower due to less interleaf transmission of the Halcyon MLC and a lower contribution of scattered dose from the collimator system.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
5.
Radiat Oncol ; 16(1): 226, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809645

RESUMO

PURPOSE: This study presents patient-specific quality assurance (QA) results from the first 395 clinical cases for the new helical TomoTherapy® platform (Radixact) coupled with dedicated Precision TPS. METHODS: The passing rate of the Gamma Index (GP%) of 395 helical QA of patient-specific tomotherapy, acquired with ArcCHECK, is presented, analysed and correlated to various parameters of the plan. Following TG-218 recommendations, the clinic specific action limit (ALcs) and tolerance limit (TLcs) were calculated for our clinic and monitored during the analysed period. RESULTS: The mean values ​​(± 1 standard deviation) of GP% (3%/2 mm) (both global and local normalization) are: 97.6% and 90.9%, respectively. The proposed ALcs and TLcs, after a period of two years' process monitoring are 89.4% and 91.1% respectively. CONCLUSIONS: The phantom measurements closely match the planned dose distributions, demonstrating that the calculation accuracy of the new Precision TPS and the delivery accuracy of the Radixact unit are adequate, with respect to international guidelines and reports. Furthermore, a first correlation with the planning parameters was made. Action and tolerance limits have been set for the new Radixact Linac.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Raios gama , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
6.
J Cancer Res Ther ; 17(4): 853-856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34528531

RESUMO

BACKGROUND: Nowadays, radiotherapy has an important role in the treatment of cancer. The use of medical linacs in radiotherapy can have risks for patients. When radiotherapy is performed with photons with energies higher than 8 MeV, due to the photonuclear reaction of photons with various components in the head of the accelerator, the neutron is produced. This imposes an unwanted neutron dose to the patient. The purpose of this study is evaluation and comparison of fast-neutron contamination with increasing of field size and depth for Siemens Primus (15 MV), Siemens Primus Plus (18 MV), and Siemens Artiste (15 MV) linacs. MATERIALS AND METHODS: Neutron dosimetry was carried out with CR-39 films, as a fast-neutron dosimeter, using chemical etching technique. Measurements were performed in depths of 0.5, 2, 3, and 4 cm and source-to-surface distance of 100 cm. Field sizes were 10 cm × 10 cm and 30 cm × 30 cm. RESULTS: The results of measurements showed that, with increasing depth, equivalent dose is reduced. In addition, fast-neutron equivalent dose decreases with increasing the field size. CONCLUSION: Siemens Primus Plus had the highest neutron contamination in comparison with the two other linacs. Deeper tissues receive less fast-neutron doses. In radiation therapy with high-energy photon beams, neutron dose delivered to the patients should be taking into account.


Assuntos
Nêutrons Rápidos , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Fótons , Polietilenoglicóis/química , Radiometria/instrumentação , Humanos , Radiometria/métodos , Dosagem Radioterapêutica
7.
J Cancer Res Ther ; 17(4): 870-874, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34528534

RESUMO

AIM: The aim of this study was to measure and compare the output factor (OF) of a CyberKnife Robotic Radiosurgery System with eight different small field detectors and validate with Technical Report Series (TRS) report 483. BACKGROUND: Accurate dosimetry of CyberKnife system is limited due to the challenges in small field dosimetry. OF is a vital dosimetric parameter used in the photon beam modeling and any error would affect the dose calculation accuracy. MATERIALS AND METHODS: In this study, the OF was measured with eight different small-field detectors for the 12 IRIS collimators at 800 mm SAD setup at 15 mm depth. The detectors used were PTW 31016 PinPoint 3D, IBA PFD shielded diode, IBA EFD unshielded diode, IBA SFD unshielded diode (stereotactic), PTW 60008 shielded diode, PTW 60012 unshielded diode, PTW 60018 unshielded diode (stereotactic), and PTW 60019 CVD diamond detector. OF was obtained after correcting for field output correction factors from IAEA TRS No. 483. RESULTS: The field OFs in CyberKnife are derived from the measured data by applying the correction factors from Table 23 in TRS 483 for the eight small field detectors. These field OFs matched within 2% of peer-reviewed published values. The range and standard deviation showed a decreasing trend with collimator diameter. CONCLUSION: The field OF obtained after applying the appropriate correction factor from TRS 483 matched well with the peer-reviewed published OFs. The inter-detector variation showed a decreasing trend with increasing collimator field size. This study gives physicists confidence in measuring field OFs while using small field detectors mentioned in this work.


Assuntos
Método de Monte Carlo , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Radiocirurgia/instrumentação , Procedimentos Cirúrgicos Robóticos/instrumentação , Humanos
8.
Asian Pac J Cancer Prev ; 22(8): 2577-2585, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34452573

RESUMO

BACKGROUND: The purpose of this study was to evaluate the surface dose (SD) of 6 and 10 MV flattening filter beam (FF) and flattening filter free (FFF) beam for different square field sizes in three Beam-matched medical linear accelerators using a parallel-plate ionization chamber. MATERIALS AND METHODS: The experiment was carried out in a phantom composed of 40×40 cm2 solid Water slabs of varying thickness. Further sheets of solid water phantom were added to take readings in the build-up region for both SSD and SAD technique. Surface doses are measured with a PPC-05 chamber and DOSE 1 electrometer, at measurement depth of 1 mm interval and all results are plotted relative to the dose measured at Dmax for various field sizes. Surface dose readings are therefore reported as relative surface dose. RESULTS: Surface dose increased linearly with field size for both FF and FFF photon beams in all three beam-matched linear accelerators in both SSD and SAD setup. The surface dose of FFF was higher than FF beams in all field sizes. For the given energy the surface dose difference (relative to 10x10 cm2 field size of 6FF) between FF and FFF beam was larger for large field size. For 6FF and 6FFF beam the surface dose difference for 5x5 cm2 is -5.27%, and for 30x30 cm2 it is 12.91%. The measured surface dose differences between linear accelerators are not statically significant (P>0.989). Similarly, the surface dose difference between SSD and SAD setup was also analysed and had no statistical significance (P>0.849). CONCLUSION: Study showed that the surface dose difference between beam-matched linear accelerators are insignificant. The surface dose difference between SSD and SAD setup were also found negligible. Most importantly, changing patients between beam-matched linear accelerators will not have any significant changes in surface dose in clinical setup.
.


Assuntos
Filtração/instrumentação , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Dosagem Radioterapêutica
9.
Radiat Oncol ; 16(1): 133, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34289868

RESUMO

BACKGROUND: The aim of this study was to evaluate and compare the performance of intensity modulated radiation therapy (IMRT) plans, planned for low-field strength magnetic resonance (MR) guided linear accelerator (linac) delivery (labelled IMRT MRL plans), and clinical conventional volumetric modulated arc therapy (VMAT) plans, for the treatment of prostate cancer (PCa). Both plans used the original planning target volume (PTV) margins. Additionally, the potential dosimetric benefits of MR-guidance were estimated, by creating IMRT MRL plans using smaller PTV margins. MATERIALS AND METHODS: 20 PCa patients previously treated with conventional VMAT were considered. For each patient, two different IMRT MRL plans using the low-field MR-linac treatment planning system were created: one with original (orig.) PTV margins and the other with reduced (red.) PTV margins. Dose indices related to target coverage, as well as dose-volume histogram (DVH) parameters for the target and organs at risk (OAR) were compared. Additionally, the estimated treatment delivery times and the number of monitor units (MU) of each plan were evaluated. RESULTS: The dose distribution in the high dose region and the target volume DVH parameters (D98%, D50%, D2% and V95%) were similar for all three types of treatment plans, with deviations below 1% in most cases. Both IMRT MRL plans (orig. and red. PTV margins) showed similar homogeneity indices (HI), however worse values for the conformity index (CI) were also found when compared to VMAT. The IMRT MRL plans showed similar OAR sparing when the orig. PTV margins were used but a significantly better sparing was feasible when red. PTV margins were applied. Higher number of MU and longer predicted treatment delivery times were seen for both IMRT MRL plans. CONCLUSIONS: A comparable plan quality between VMAT and IMRT MRL plans was achieved, when applying the same PTV margin. However, online MR-guided adaptive radiotherapy allows for a reduction of PTV margins. With a red. PTV margin, better sparing of the surrounding tissues can be achieved, while maintaining adequate target coverage. Nonetheless, longer treatment delivery times, characteristic for the IMRT technique, have to be expected.


Assuntos
Órgãos em Risco/efeitos da radiação , Aceleradores de Partículas/instrumentação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos
10.
Radiat Oncol ; 16(1): 139, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321029

RESUMO

BACKGROUND: Mega-voltage fan-beam Computed Tomography (MV-FBCT) holds potential in accurate determination of relative electron density (RED) and proton stopping power ratio (SPR) but is not widely available. OBJECTIVE: To demonstrate the feasibility of MV-FBCT using a medical linear accelerator (LINAC) with a 2.5 MV imaging beam, an electronic portal imaging device (EPID) and multileaf collimators (MLCs). METHODS: MLCs were used to collimate MV beam along z direction to enable a 1 cm width fan-beam. Projection data were acquired within one gantry rotation and preprocessed with in-house developed artifact correction algorithms before the reconstruction. MV-FBCT data were acquired at two dose levels: 30 and 60 monitor units (MUs). A Catphan 604 phantom was used to evaluate basic image quality. A head-sized CIRS phantom with three configurations of tissue-mimicking inserts was scanned and MV-FBCT Hounsfield unit (HU) to RED calibration was established for each insert configuration using linear regression. The determination coefficient ([Formula: see text]) was used to gauge the accuracy of HU-RED calibration. Results were compared with baseline single-energy kilo-voltage treatment planning CT (TP-CT) HU-RED calibration which represented the current standard clinical practice. RESULTS: The in-house artifact correction algorithms effectively suppressed ring artifact, cupping artifact, and CT number bias in MV-FBCT. Compared to TP-CT, MV-FBCT was able to improve the prediction accuracy of the HU-RED calibration curve for all three configurations of insert materials, with [Formula: see text] > 0.9994 and [Formula: see text] < 0.9990 for MV-FBCT and TP-CT HU-RED calibration curves of soft-tissue inserts, respectively. The measured mean CT numbers of blood-iodine mixture inserts in TP-CT drastically deviated from the fitted values but not in MV-FBCT. Reducing the radiation level from 60 to 30 MU did not decrease the prediction accuracy of the MV-FBCT HU-RED calibration curve. CONCLUSION: We demonstrated the feasibility of MV-FBCT and its potential in providing more accurate RED estimation.


Assuntos
Algoritmos , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Artefatos , Calibragem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica
11.
Radiat Oncol ; 16(1): 117, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174932

RESUMO

BACKGROUND: The purpose of this study is to comprehensively evaluate the suitability of Gafchromic EBT3 and EBT-XD film for dosimetric quality assurance in 0.35 T MR-guided radiotherapy. METHODS: A 0.35 T magnetic field strength was utilized to evaluate magnetic field effects on EBT3 and EBT-XD Gafchromic films by studying the effect of film exposure time within the magnetic field using two timing sequences and film not exposed to MR, the effect of magnetic field exposure on the crystalline structure of the film, and the effect of orientation of the film with respect to the bore within the magnetic field. The orientation of the monomer crystal was qualitatively evaluated using scanning electron microscopy (SEM) compared to unirradiated film. Additionally, dosimetric impact was evaluated through measurements of a series of open field irradiations (0.83 × 0.83-cm2 to 19.92 × 19.92-cm2) and patient specific quality assurance measurements. Open fields were compared to planned dose and an independent dosimeter. Film dosimetry was applied to twenty conventional and twenty stereotactic body radiotherapy (SBRT) patient specific quality assurance cases. RESULTS: No visual changes in crystal orientation were observed in any evaluated SEM images nor were any optical density differences observed between films irradiated inside or outside the magnetic field for both EBT3 and EBT-XD film. At small field sizes, the average difference along dose profiles measured in film compared to the same points measured using an independent dosimeter and to predicted treatment planning system values was 1.23% and 1.56%, respectively. For large field sizes, the average differences were 1.91% and 1.21%, respectively. In open field tests, the average gamma pass rates were 99.8% and 97.2%, for 3%/3 mm and 3%/1 mm, respectively. The median (interquartile range) 3%/3 mm gamma pass rates in conventional QA cases were 98.4% (96.3 to 99.2%), and 3%/1 mm in SBRT QA cases were 95.8% (95.0 to 97.3%). CONCLUSIONS: MR exposure at 0.35 T had negligible effects on EBT3 and EBT-XD Gafchromic film. Dosimetric film results were comparable to planned dose, ion chamber and diode measurements.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/cirurgia , Aceleradores de Partículas/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/normas , Humanos , Campos Magnéticos , Doses de Radiação , Radiocirurgia
12.
Technol Cancer Res Treat ; 20: 15330338211011964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910440

RESUMO

PURPOSE: To evaluate the dosimetric accuracy of the default couch model of the QFix kVueTM Calypso couch top in the treatment planning system. METHODS: With the gantry 180°, field size 20 × 20 cm, 6 MV, we measured the depth dose, off-axis dose, and dose plane of different depths in the phantom with the couch rails in and out, respectively. Isocenter doses at different angles were also obtained. The results were compared to the doses calculated using the default couch top model and the real scanned couch top model. Then we revised the default model according to the measured results. RESULTS: With "Rails In," the depth dose, off-axis dose, and dose plane of the default couch top model had a big difference with the dose of the real scanned couch top model and the measured result. The dose of the real scanned couch top model was much closer to the measured result, but in the region of the rail edge, the difference was still significant. With "Rails Out," there was a minor difference between the measured result, the dose of the default couch top model and the real scanned couch top model. The difference between the measurement and the default couch top model became very small after being revised. CONCLUSIONS: It is better to avoid the beam angle passing through the couch rails in treatment plans, or you should revise the parameter of the QFix kVueTM Calypso couch top model based on the measured results, and verify the treatment plan before clinical practice.


Assuntos
Algoritmos , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Dosagem Radioterapêutica
13.
Sci Rep ; 11(1): 7576, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828211

RESUMO

Boron Neutron Capture Therapy (BNCT) is facing a new era where different projects based on accelerators instead of reactors are under development. The new facilities can be placed at hospitals and will increase the number of clinical trials. The therapeutic effect of BNCT can be improved if a optimized epithermal neutron spectrum is obtained, for which the beam shape assembly is a key ingredient. In this paper we propose an optimal beam shaping assembly suited for an affordable low energy accelerator. The beam obtained with the device proposed accomplishes all the IAEA recommendations for proton energies between 2.0 and 2.1 MeV. In addition, there is an overall improvement of the figures of merit with respect to BNCT facilities and previous proposals of new accelerator-based facilities.


Assuntos
Terapia por Captura de Nêutron de Boro/instrumentação , Nêutrons , Aceleradores de Partículas/instrumentação , Prótons , Terapia por Captura de Nêutron de Boro/estatística & dados numéricos , Simulação por Computador , Desenho de Equipamento , Humanos , Aceleradores de Partículas/estatística & dados numéricos , Imagens de Fantasmas , Dosagem Radioterapêutica
14.
J Cancer Res Ther ; 17(1): 142-147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33723145

RESUMO

INTRODCTION: Optimal time management is of utmost importance in the radiotherapy department. Inappropriate allocation of time slots leads to prolonged waiting times and decreased patient satisfaction during external beam radiotherapy. The present study tests a logical model to improve the waiting time for the patients. MATERIALS AND METHODS: The treatment time, waiting time, and causes of delay were studied from November 4, 2014, to July 24, 2015. New rules were framed for treatment slot allocation from December 26, 2014. The treatment slots were classified based on the treatment technology (three-dimensional conformal radiotherapy and intensity-modulated radiotherapy) with inclusion of "buffer slots" and patient education. The results were compared before and after rules. RESULTS: A total of 1032 time slots were analyzed, of which 225 "before rules" and 807 "after rules," respectively. There was a significant reduction in the average waiting time for treatment in on-time patients (median [interquartile range (IQR)] of 25.2 min [31.75] vs. 3 min [3.5]; P< 0.00001) as well as in late-coming patients (median [IQR] of 38.2 min [13.795] vs. 21.11 min [12.75]; P= 0.00006). 59.7% (71 patients) of the treatment was delayed "before rules" as opposed to 32.2% (137 patients) "after rules" in on-time patients. Due to better patient education, there was a significant improvement in the patient punctuality toward the allotted time. CONCLUSION: The treatment slots classified based on the teletherapy technique with buffer slots, and patient education helps in better time management on linear accelerator. This methodology significantly reduces waiting time and thereby the number of patients having delay in the treatment.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodos , Gerenciamento do Tempo/métodos , Listas de Espera , Agendamento de Consultas , Humanos
15.
J Cancer Res Ther ; 17(1): 148-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33723146

RESUMO

PURPOSE: To describe the details of an in-house video goggles feedback system assembled from several commercially available components. The objective of this paper is to share our experience with this system, provide details on the equipment needed, system assembly, patient set up and user settings on some components. MATERIALS AND METHODS: The system consisted of goggles (FPView3DHD, ITV, USA), RJ45(Registered Jack) to Digital Visual Interface (DVI) converter (Tripplite), DVI to HDMI converters, Local Area Network(LAN) cable, HDMI and power extender cables. The video coaching system was implemented both in CT simulator (GE Discovery)) and in treatment delivery machine True Beam v2.1 Varian Medical Systems (VMS, Palo Alto), which was integrated with respiratory motion management (RPM V 1.7.5) system. RESULTS: The video feedback system is in clinical use since Aug 2017, so far, we have treated 13 patients, with approximately 150 fractions. The performance of the device was found to be satisfactory. All the patients were coached for DIBH and the usage of the goggles, which includes wearing the goggles, display details of the monitor, and the threshold levels of the breathing wave cycle. The patients understand the instructions very well and hence regulate the breathing cycle, which improves the treatment accuracy and efficiency. CONCLUSION: Video feedback system for motion management, for patients undergoing radiotherapy was implemented successfully both in CT simulator and in linear accelerator.


Assuntos
Suspensão da Respiração , Retroalimentação Sensorial/fisiologia , Movimento (Física) , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Humanos , Neoplasias/diagnóstico por imagem , Dosagem Radioterapêutica
16.
Rev Sci Instrum ; 92(2): 024103, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648097

RESUMO

A compact X-band linear accelerator (LINAC) system equipped with a small and lightweight magnetron was constructed to develop a high-precision image-guided radiotherapy system. The developed LINAC system was installed in an O-ring gantry where cone-beam computed tomography (CBCT) was embedded. When the O-arm gantry is rotated, an x-ray beam is stably generated, which resulted from the stable transmission of radio frequency power into the X-band LINAC system. Quality assurance (QA) tests, including mechanical and dosimetry checks, were carried out to ensure safety and operation performance according to the American Association of Physicists in Medicine's TG-51, 142, an international standard protocol established by accredited institutions. In addition, delivery QA of the radiotherapy planning system was conducted to verify intensity-modulated radiotherapy techniques. Therefore, it was demonstrated that the developed X-band LINAC system mounted on the O-arm gantry proved to be valid and reliable for potential use in CBCT image-guided radiation therapy.


Assuntos
Aceleradores de Partículas/instrumentação , Radioterapia/instrumentação , Rotação , Desenho de Equipamento
17.
Phys Med Biol ; 66(4): 045015, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33361551

RESUMO

When relativistic electrons are used to irradiate tissues, such as during FLASH pre-clinical irradiations, the electron beam energy is one of the critical parameters that determine the dose distribution. Moreover, during such irradiations, linear accelerators (linacs) usually operate with significant beam loading, where a small change in the accelerator output current can lead to beam energy reduction. Optimisation of the tuning of the accelerator's radio frequency system is often required. We describe here a robust, easy-to-use device for non-interceptive monitoring of potential variations in the electron beam energy during every linac macro-pulse of an irradiation run. Our approach monitors the accelerated electron fringe beam using two unbiased aluminium annular charge collection plates, positioned in the beam path and with apertures (5 cm in diameter) for the central beam. These plates are complemented by two thin annular screening plates to eliminate crosstalk and equalise the capacitances of the charge collection plates. The ratio of the charge picked up on the downstream collection plate to the sum of charges picked up on the both plates is sensitive to the beam energy and to changes in the energy spectrum shape. The energy sensitivity range is optimised to the investigated beam by the choice of thickness of the first plate. We present simulation and measurement data using electrons generated by a nominal 6 MeV energy linac as well as information on the design, the practical implementation and the use of this monitor.


Assuntos
Elétrons , Aceleradores de Partículas/instrumentação , Simulação por Computador , Método de Monte Carlo , Radiometria
18.
Phys Med Biol ; 66(3): 035020, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33207321

RESUMO

Ultra-high dose rate in radiotherapy (FLASH) has been shown to increase the therapeutic index with markedly reduced normal tissue toxicity and the same or better tumor cell killing. The challenge to achieve FLASH using x-rays, besides developing a high output linac, is to intensity-modulate the high-dose-rate x-rays so that the biological gain is not offset by the lack of physical dose conformity. In this study, we develop the ROtational direct Aperture optimization with a Decoupled ring-collimator (ROAD) to achieve simultaneous ultrafast delivery and complex dose modulation. The ROAD design includes a fast-rotating slip-ring linac and a decoupled collimator-ring with 75 pre-shaped multi-leaf-collimator (MLC) modules. The ring-source rotates at 1 rotation per second (rps) clockwise while the ring-collimator is either static or rotating at 1 rps counterclockwise, achieving 75 (ROAD-75) or 150 (ROAD-150) equal-angular beams for one full arc. The Direct Aperture Optimization (DAO) for ROAD was formulated to include a least-square dose fidelity, an anisotropic total variation term, and a single segment term. The FLASH dose (FD) and FLASH biological equivalent dose (FBED) were computed voxelwise, with the latter using a spatiotemporal model accounting for radiolytic oxygen depletion. ROAD was compared with clinical volumetric modulated arc therapy (VMAT) on a brain, a lung, a prostate, and a head and neck cancer patient. The mean dose rate of ROAD-75 and ROAD-150 are 76.2 Gy s-1 and 112 Gy s-1 respectively to deliver 25 Gy single-fraction dose in 1 s. With improved PTV homogeneity, ROAD-150 reduced (max, mean) OAR physical dose by (4.8 Gy, 6.3 Gy). The average R50 and integral dose of (VMAT, ROAD-75, ROAD-150) are (4.8, 3.2, 3.2) and (89, 57, 56) Gy×Liter, respectively. The FD and FBED showed model dependent FLASH effects. The novel ROAD design achieves ultrafast dose delivery and improves physical dosimetry compared with clinical VMAT, providing a potentially viable engineering solution for x-ray FLASH radiotherapy.


Assuntos
Aceleradores de Partículas/normas , Equipamentos e Provisões para Radiação/normas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Glioblastoma/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Neoplasias Pulmonares/radioterapia , Masculino , Aceleradores de Partículas/instrumentação , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/normas
19.
Phys Med Biol ; 66(5): 055006, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33171458

RESUMO

Real-time motion monitoring of lung tumors with low-field magnetic resonance imaging-guided linear accelerators (MR-Linacs) is currently limited to sagittal 2D cine magnetic resonance imaging (MRI). To provide input data for improved intrafractional and interfractional adaptive radiotherapy, the 4D anatomy has to be inferred from data with lower dimensionality. The purpose of this study was to experimentally validate a previously proposed propagation method that provides continuous time-resolved estimated 4D-MRI based on orthogonal cine MRI for a low-field MR-Linac. Ex vivo porcine lungs were injected with artificial nodules and mounted in a dedicated phantom that allows for the simulation of periodic and reproducible breathing motion. The phantom was scanned with a research version of a commercial 0.35 T MR-Linac. Respiratory-correlated 4D-MRI were reconstructed and served as ground truth images. Series of interleaved orthogonal slices in sagittal and coronal orientation, intersecting the injected targets, were acquired at 7.3 Hz. Estimated 4D-MRI at 3.65 Hz were created in post-processing using the propagation method and compared to the ground truth 4D-MRI. Eight datasets at different breathing frequencies and motion amplitudes were acquired for three porcine lungs. The overall median (95[Formula: see text] percentile) deviation between ground truth and estimated deformation vector fields was 2.3 mm (5.7 mm), corresponding to 0.7 (1.6) times the in-plane imaging resolution (3.5 × 3.5 mm2). Median (95[Formula: see text] percentile) estimated nodule position errors were 1.5 mm (3.8 mm) for nodules intersected by orthogonal slices and 2.1 mm (7.1 mm) for nodules located more than 2 cm away from either of the orthogonal slices. The estimation error depended on the breathing phase, the motion amplitude and the location of the estimated position with respect to the orthogonal slices. By using the propagation method, the 4D motion within the porcine lung phantom could be accurately and robustly estimated. The method could provide valuable information for treatment planning, real-time motion monitoring, treatment adaptation, and post-treatment evaluation of MR-guided radiotherapy treatments.


Assuntos
Imageamento Tridimensional/métodos , Pulmão/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/métodos , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Animais , Simulação por Computador , Movimento , Respiração , Suínos
20.
Radiat Res ; 194(6): 580-586, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33348371

RESUMO

In the novel and promising radiotherapy technique known as FLASH, ultra-high dose-rate electron beams are used. As a step towards clinical trials, dosimetric advances will be required for accurate dose delivery of FLASH. The purpose of this study was to determine whether a built-in transmission chamber of a clinical linear accelerator can be used as a real-time dosimeter to monitor the delivery of ultra-high-dose-rate electron beams. This was done by modeling the drop-in ion-collection efficiency of the chamber with increasing dose-per-pulse values, so that the ion recombination effect could be considered. The raw transmission chamber signal was extracted from the linear accelerator and its response was measured using radiochromic film at different dose rates/dose-per-pulse values, at a source-to-surface distance of 100 cm. An increase of the polarizing voltage, applied over the transmission chamber, by a factor of 2 and 3, improved the ion-collection efficiency, with corresponding increased efficiency at the highest dose-per-pulse values by a factor 1.4 and 2.2, respectively. The drop-in ion-collection efficiency with increasing dose-per-pulse was accurately modeled using a logistic function fitted to the transmission chamber data. The performance of the model was compared to that of the general theoretical Boag models of ion recombination in ionization chambers. The logistic model was subsequently used to correct for ion recombination at dose rates ranging from conventional to ultra-high, making the transmission chamber useful as a real-time monitor for the dose delivery of FLASH electron beams in a clinical setup.


Assuntos
Aceleradores de Partículas/instrumentação , Dosagem Radioterapêutica , Elétrons , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...